

Status and Recent Validation Results

Eric J. Fetzer, Denise Hagan and Stephen Leroy

Jet Propulsion Laboratory

Eric.J.Fetzer@jpl.nasa.gov

AIRS Science Team Meeting Greenbelt MD October 21, 2003

Validation Topics

- Topical Collection in Journal of Geophysical Research on AIRS validation
 - In contact with JGR editors
 - Titles welcome
- Some recent results on AIRS validation
 - Scan-angle dependence of SST (D. Hagan)
 - Statistical comparisons with ECMWF (S. Leroy)
 - Global variability in comparisons with ECMWF (Fetzer & E. Olsen)
 - Ozone-humidity covariability at 300 mb (Bill Irion and collaborator Andrew Gettelman).

JGR Topical Collection on AIRS Validation

The Rules

- Need 10 or more articles
- Reviewed like any other JGR article
- Journal needs reviewers
- Tight publication schedule / deadlines
- Manuscripts likely due spring / summer
 - No firm due dates until we propose a topic
 - I would like to do so in early November

JGR Topical Collection on AIRS Validation

Some titles

- Cloud-cleared radiances, Evan Fishbein, et al.
- The AIRS Water Vapor Experiment, D. Whiteman, et al.
- Experiments in Support of AIRS Validation, Robert Atlas et al.
- SST Validation, D. Hagan, et al.
- Temperature Profile Validation, E. Fetzer et al.
- Short Term Variations at ARM sites, B. Lesht et al.
- Case Study of Water Vapor, C. B. Farmer, et al.
- Overview of AIRS Validation, Fetzer and McMillan
- Microwave Radiative Transfer Model Validation, P. Rosenkranz
- AIRS/AMSU/HSB Cloud Liquid Water Validation, P. Rosenkranz
- The ABOVE Experiment, Wallace McMillan, et al.
- Water Vapor Validation with Sondes and GPS, McMillin and Yoe
- Validation with SHIS, Revercomb, Tobin, others

JGR Topical Collection on AIRS Validation (con't)

More titles:

- Comparison of AIRS, MODIS, CERES on Aqua, Tobin, et al.
- ARM Best Estimates, Tobin, Revercomb, Strow, others
- Val. of AIRS Land Surface Emissivity, Knuteson, et al.
- AIRS validation in Antarctica, Walden, et al.

I hope...

- Ozone Results, Mike Newchurch, et al.
- Forward Model Validation, Strow et al.
- Radiances and SST, Aumann et al.
- Mauna Loa / Hilo Observations, J. Barnes, H. Voemel
- Others...

Expect

- More pestering emails and phone calls in the next few weeks.
- A tight schedule, with more pestering emails and phone calls.

What We've Done and What We're Doing

- August Validation Report
 - Statistical comparisons over oceans ±40 degrees.
- More Recently: Exploratory Data Analysis
 - A wide variety of analyses
 - Zonal mean structure and deviation (S. Leroy looking for Kelvin waves).
 - SST vs. scan angles and cloud top temperature (D. Hagan)
 - Global analyses of granules
 - Global maps of interrelated quantities (Ed Olsen)
 - Small scale structures
 - The topic of tomorrow's talk.

A Recent Result: AIRS-NCEP2 (Stephen Leroy) Deviations from zonal mean along the equator

This significant result confirms long-term stability.

DENISE HAGAN: AIRS L2 Cloud-cleared SST versus M-AERI SST

from Caribbean Explorer of the Sea

M-AERI data courtesy of Peter Minnett, RSMAS

Sept 1 through Sept 30

September and December Data

In tropics, AIRS L2 SST agrees on average with M-AERI to within ~ 0.5°C

AIRS L2 *Cloud-cleared* SST vs Buoy SST SST validated 40° N to 40°S (*Beta* Version GSFC DACC Data)

color bands for TOA 10 micron brightness temperatures

In tropics, SST retrieved from very cold (cloudy) footprints are within 1 K of surface truth

D. Hagan, JPL

Global Variability in Comparisons with ECMWF

- The Procedure:
 - Consider only retrieval_type =0 cases
 - Consider only daytime ocean granules ± 40 lat, January 3
 - Sunglint, but with Vis/NIR diagnostics
 - Calculate scatterplots of AIRS vs. ECMWF for T and q.
 - Color code (red) points with deviations from NCEP SST by >3 K
 - Focus initially on lowest levels
 - ...because that's where retrieval errors are largest
- The Result
 - Several regimes are seen

Granule Locations on January 3

Regime 1: Midlatitude Storm Tracks

South of Japan

More Midlatitude Storm Tracks

South of Africa!

Regime 2: Moist Tropics

Tropical Western Pacific

More Moist Tropics

Tropical Indian Ocean

Regime 3: Stratus Zones

West of Africa

More Stratus Zones

West of South America

Conclusions About Granule Scatterplots

- Certain weather regimes predominate
- Understanding these should lead to more definitive internal indicators of retrieval quality.

NEXT: Upper Tropospheric Humidity and Ozone Physical Consistency in AIRS Products:

First noted by collaborator Andrew Gettelman of NCAR

 The Basic Principle: Ozone and UTH are anticorrelated because they are separated by the tropopause

Storm systems change tropopause height

Note Highest Values in North and South Pacific

Note LOW Values in North and South Pacific

Summaries of the Latest Validation Results

- Title are welcome for a Topical Collection in JGR-Atmospheres
- A number of indicators show AIRS is producing high quality retrievals
 - Remarkable agreement between AIRS and NCEP in mean temperatures in the equatorial troposphere.
 - Weak dependence of inferred SST on cloud top temperature.
 - Global agreement with ECMWF in T for several climate regimes;
 further study need to understand q.
 - Agreement between 150 mb humidity and ozone